Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 92-99, 2020.
Article in Chinese | WPRIM | ID: wpr-872764

ABSTRACT

Objective:To investigate the effects of naringenin on oxidative stress and Tau protein phosphorylation of adrenal pheochromocytoma(PC12) cells injured by β-amyloid(Aβ)25-35 and its relationship with estrogen receptor(ER) and phosphatidylinositol -3 kinase/protein kinase B(PI3K/Akt) signaling pathway. Method:The PC12 cells were intervened with Aβ25-35 to prepare the injury model. The experiment was divided into blank group, model group, naringenin(400,40,4,0.4,0.04,4×10-3,4×10-4,4×10-5 μmol·L-1)group, positive drugs estradiol(E2)(1 nmol·L-1)+Aβ25-35 group, naringenin(0.4,0.04,4×10-3,4×10-4,4×10-5 μmol·L-1)+Aβ25-35 group, E2+Aβ25-35+ER antagonist(ICI182780)(1 μmol·L-1) group, naringenin+Aβ25-35+ICI182780 group, E2+Aβ25-35+PI3K blocker(LY294002)(50 μmol·L-1) group, naringenin+Aβ25-35+LY294002 group. Methye thiazolye telrazlium(MTT)method was used to detect the cell proliferation index, 2',7'-Dichlorodi -hydrofluorescein diacetate(DCFH-DA) was used as a fluorescent probe to detect the content of reactive osygen species(ROS), the content of malondialdehyde(MDA) and the activity of superoxide dismutase(SOD) were measured by thiobarbituric acid(TBA) and oxidase methods, Western blot was used to detect the expression of phosphorylated Tau protein/total Tau protein(p-Tau/t-Tau). Result:According to the results of MTT experiment, 0.4 μmol·L-1 was selected as the best effective concentration of naringenin, compared with the blank group, the cell proliferation index of model group decreased significantly (P<0.01), compared with model group, the cell proliferation index of naringenin+Aβ25-35 group increased significantly (P<0.01). In addition, compared with blank group, the content of ROS, MDA and the expression of p-Tau/t-Tau in the model group increased significantly (P<0.01), and the activity of SOD decreased significantly (P<0.01), compared with model group, the content of ROS, MDA and the expression of p-Tau/t-Tau in naringenin+Aβ25-35 group decreased significantly (P<0.01), and the activity of SOD increased significantly (P<0.01), compared with naringenin+Aβ25-35 group, the addition of ICI182780 and LY294002 significantly reversed the role of naringenin in the above indicators (P<0.01). The effect of naringenin was similar to that of E2. Conclusion:Naringenin can improve the cell proliferation index and protect PC12 cells from Aβ25-35 injury, which may be achieved by activating ER and PI3K/Akt signaling pathway to reduce ROS, MDA content, p-Tau/t-Tau expression and promote SOD activity.

2.
China Journal of Chinese Materia Medica ; (24): 1310-1316, 2018.
Article in Chinese | WPRIM | ID: wpr-687295

ABSTRACT

Based on the literature review and modern application of Paeonia lactiflora in heart diseases, this article would predict the target of drug and disease by intergrative pharmacology platform of traditional Chinese medicine (TCMIP, http://www.tcmip.cn), and then explore the molecular mechanism of P. lactiflora in treatment of heart disease, providing theoretical basis and method for further studies on P. lactiflora. According to the ancient books, P. lactiflora with functions of "removing the vascular obstruction, removing the lumps, relieving pain, diuretic, nutrient qi" and other effects, have been used for many times to treat heart disease. Some prescriptions are also favored by the modern physicians nowadays. With the development of science, the chemical components that play a role in heart disease and the interrelation between these components and the body become the research hotspot. In order to further reveal the pharmacological substance base and molecular mechanism of P. lactiflora for the treatment of such diseases, TCM-IP was used to obtain multiple molecular targets and signaling pathways in treatment of heart disease. ATP1A1, a common target of drug and disease, was related to energy, and HDAC2 mainly regulated cardiomyocyte hypertrophy gene and cardiomyocyte expression. Other main drug targets such as GCK, CHUK and PRKAA2 indirectly regulated heart disease through many pathways; multiple disease-associated signaling pathways interfered with various heart diseases including coronary heart disease, myocardial ischemia and myocardial hypertrophy through influencing energy metabolism, enzyme activity and gene expression. In conclusion, P. lactiflora plays a role in protecting heart function by regulating the gene expression of cardiomyocytes directly. Meanwhile, it can indirectly intervene in other pathways of heart function, and thus participate in the treatment of heart disease. In this paper, the molecular mechanism of P. lactiflora for treatment of heart disease was in computer prediction analysis level, and the specific mechanism of action still needs further experimental verification.

SELECTION OF CITATIONS
SEARCH DETAIL